MicroRNA-181b Improves Glucose Homeostasis and Insulin Sensitivity by Regulating Endothelial Function in White Adipose Tissue.

نویسندگان

  • Xinghui Sun
  • Jibin Lin
  • Yu Zhang
  • Sona Kang
  • Nathan Belkin
  • Akm K Wara
  • Basak Icli
  • Naomi M Hamburg
  • Dazhu Li
  • Mark W Feinberg
چکیده

RATIONALE The pathogenesis of insulin resistance involves dysregulated gene expression and function in multiple cell types, including endothelial cells (ECs). Post-transcriptional mechanisms such as microRNA-mediated regulation of gene expression could affect insulin action by modulating EC function. OBJECTIVE To determine whether microRNA-181b (miR-181b) affects the pathogenesis of insulin resistance by regulating EC function in white adipose tissue during obesity. METHODS AND RESULTS MiR-181b expression was reduced in adipose tissue ECs of obese mice, and rescue of miR-181b expression improved glucose homeostasis and insulin sensitivity. Systemic intravenous delivery of miR-181b robustly accumulated in adipose tissue ECs, enhanced insulin-mediated Akt phosphorylation at Ser473, and reduced endothelial dysfunction, an effect that shifted macrophage polarization toward an M2 anti-inflammatory phenotype in epididymal white adipose tissue. These effects were associated with increased endothelial nitric oxide synthase and FoxO1 phosphorylation as well as nitric oxide activity in epididymal white adipose tissue. In contrast, miR-181b did not affect insulin-stimulated Akt phosphorylation in liver and skeletal muscle. Bioinformatics and gene profiling approaches revealed that Pleckstrin homology domain leucine-rich repeat protein phosphatase, a phosphatase that dephosphorylates Akt at Ser473, is a novel target of miR-181b. Knockdown of Pleckstrin homology domain leucine-rich repeat protein phosphatase increased Akt phosphorylation at Ser473 in ECs, and phenocopied miR-181b's effects on glucose homeostasis, insulin sensitivity, and inflammation of epididymal white adipose tissue in vivo. Finally, ECs from diabetic subjects exhibited increased Pleckstrin homology domain leucine-rich repeat protein phosphatase expression. CONCLUSIONS Our data underscore the importance of adipose tissue EC function in controlling the development of insulin resistance. Delivery of miR-181b or Pleckstrin homology domain leucine-rich repeat protein phosphatase inhibitors may represent a new therapeutic approach to ameliorate insulin resistance by improving adipose tissue endothelial Akt-endothelial nitric oxide synthase-nitric oxide signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resveratrol attenuates visfatin and vaspin genes expression in adipose tissue of rats with type 2 diabetes

Objective(s): Visfatin and vaspin are secreted by adipose tissue and play key roles in glucose homeostasis and subsequently are potential targets for diabetes treatment. Resveratrol (RVS) corrects insulin secretion and improves insulin sensitivity. We investigated the RVS effects on serum antioxidants, insulin and glucose levels, also visfatin and vaspin genes expression in adipose tissue of st...

متن کامل

A Novel Role for Subcutaneous Adipose Tissue in Exercise-Induced Improvements in Glucose Homeostasis

Exercise training improves whole-body glucose homeostasis through effects largely attributed to adaptations in skeletal muscle; however, training also affects other tissues, including adipose tissue. To determine whether exercise-induced adaptations to adipose tissue contribute to training-induced improvements in glucose homeostasis, subcutaneous white adipose tissue (scWAT) from exercise-train...

متن کامل

Insulin Resistance and Endothelial Dysfunction: Macro and Microangiopathy

Insulin has classically been considered a hormone that acts primarily on skeletal muscle, adipose tissue and the liver in the control of glucose homeostasis. However, recent evidence indicates that insulin is also a vascular hormone that has an essential role in both regulating glucose homeostasis through influencing blood flow (e.g. glucose uptake in skeletal muscle and adipose tissue) and in ...

متن کامل

The proton-activated receptor GPR4 modulates glucose homeostasis by increasing insulin sensitivity.

BACKGROUND The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8) and is coupled to the production of cAMP. METHODS We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice ...

متن کامل

Brown adipose tissue regulates glucose homeostasis and insulin sensitivity.

Brown adipose tissue (BAT) is known to function in the dissipation of chemical energy in response to cold or excess feeding, and also has the capacity to modulate energy balance. To test the hypothesis that BAT is fundamental to the regulation of glucose homeostasis, we transplanted BAT from male donor mice into the visceral cavity of age- and sex-matched recipient mice. By 8-12 weeks following...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 118 5  شماره 

صفحات  -

تاریخ انتشار 2016